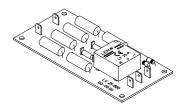
Voltage Transducer LV 25-800

For the electronic measurement of voltages : DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high voltage) and the secondary circuit (electronic circuit).

Electrical data

V _{PN} V _P I _{PN} R _M	Primary nominal r.m.s. voltage Primary voltage, measuring range Primary nominal r.m.s. current Measuring resistance		800 0 ± 1 10 R_{M min}	200 R _{Mmax}	V V mA
	with ± 12 V	@ ± 800 V _{max}	30	200	Ω
		@ ±1200 V _{max}	30	100	Ω
	with ± 15 V	@ ± 800 V _{max}	100	320	Ω
		@ ±1200 V max	100	180	Ω
I _{sn}	Secondary nominal r.m.s	. current	25		mΑ
K _N	Conversion ratio		800 V / 25 mA		
V _c	Supply voltage (± 5 %)		± 12	15	V
I _c	Current consumption		10 (@±	15V)+ I _s	mΑ
V _d	R.m.s. voltage for AC isol	ation test ¹⁾ , 50 Hz, 1 mn	4.1		kV

Accuracy - Dynamic performance data


Х _G е	Overall Accuracy @ \mathbf{V}_{PN} , $\mathbf{T}_{A} = 25^{\circ}$ C Linearity	C	± 0.8 < 0.2	% %
I _o I _{ot}	Offset current @ $\mathbf{I}_{p} = 0$, $\mathbf{T}_{A} = 25^{\circ}$ C Thermal drift of \mathbf{I}_{o}	- 25°C + 25°C + 25°C + 70°C	$\begin{array}{c c} Typ & Max \\ \pm 0.15 \\ \pm 0.10 & \pm 0.60 \\ \pm 0.10 & \pm 0.35 \end{array}$	mA mA mA
t,	Response time @ 90 % of ${f V}_{_{\sf PN}}$		25	μs

General data

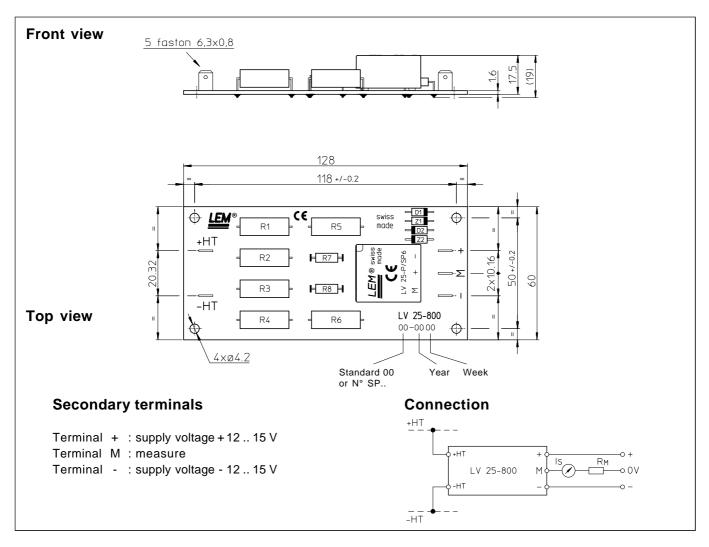
T _A	Ambient operating temperature	- 25 + 70	°C	
Ts	Ambient storage temperature	- 40 + 85	°C	
N	Turns ratio	2500 : 1000		
Р	Total primary power loss	8	W	
R ₁	Primary resistance @ T _A = 25°C	80	kΩ	
Rs	Secondary coil resistance @ $T_A = 70^{\circ}C$	110	Ω	
m	Mass	60	g	
	Standards	EN 50178 : 19	EN 50178 : 1997	

Note : ¹⁾ Between primary and secondary.

 $V_{PN} =$ 800 V

Features

- Closed loop (compensated) voltage transducer using the Hall effect
- Transducer with insulated plastic case recognized according to UL 94-V0
- Primary resistor R, and transducer mounted on printed circuit board 128 x 60 mm.


Advantages

- Excellent accuracy
- Very good linearity
- Low thermal drift
- High immunity to external interference.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Uninterruptible Power Supplies (UPS)
- · Power supplies for welding applications.

Dimensions LV 25-800 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

- General tolerance
- Fastening
- Connection of primary
- Connection of secondary

± 0.3 mm	
----------	--

4 holes \varnothing 4.2 mm Faston 6.3 x 0.8 mm

Faston 6.3 x 0.8 mm Faston 6.3 x 0.8 mm

Remarks

- $\mathbf{I}_{_{\mathrm{S}}}$ is positive when $\mathbf{V}_{_{\mathrm{P}}}$ is applied on terminal +HT.
- The primary circuit of the transducer must be linked to the connections where the voltage has to be measured.
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.